- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Azadi, Parastoo (1)
-
Hussey, Richard (1)
-
Mitchum, Melissa (1)
-
Pepi, Lauren (1)
-
Rocha, Raquel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Root-knot nematodes (RKN; Meloidogyne spp.) represent one of the most damaging groups of plant-parasitic nematodes. They secrete effector proteins through a protrusible stylet to manipulate host cells for their benefit. Stylet-secreted effector proteins are produced within specialized secretory esophageal gland cells, one dorsal (DG) and two subventral (SvG), whose activity differ throughout the nematode life cycle. Previous gland transcriptomic profiling studies identified dozens of candidate RKN effectors, but were focused on the juvenile stages of the nematode when the SvGs are most active. We developed a new approach to enrich for the active DGs of RKN M. incognita adult females for RNA and protein extraction. Female heads were manually cut from the body, and a combination of sonication/vortexing was used to dislodge contents inside the heads. DG-enriched fractions were collected by filtering using cell strainers. Comparative transcriptome profiling of pre-parasitic second-stage juveniles, female heads, and DG-enriched samples was conducted using RNA sequencing. Application of an established effector mining pipeline led to the identification of 83 candidate effector genes upregulated in DG-enriched samples of adult females that code for proteins with a predicted signal peptide, but lack transmembrane domains or homology to proteins in the free-living nematode Caenorhabditis elegans. In situ hybridization resulted in the identification of 14 new DG-specific candidate effectors expressed in adult females. Taken together, we have identified novel candidate Meloidogyne effector genes that may have essential roles during later stages of parasitism.more » « less
An official website of the United States government
